

 AEROSPACE REPORT NO.
 TOR-2021-00133

A Class Agnostic Mission Assurance Approach

January 15, 2021

Barbara M. Braun1, Lisa A. Berenberg2, Sabrina L. Herrin1, Riaz S. Musani1,
and Douglas A. Harris1
1Space Innovation Directorate, Advanced Development and Planning Division
2NNSA Nuclear Nonproliferation Programs, NNSA Programs Directorate

Prepared for:
Space and Missile Systems Center
United States Space Force
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-19-C-0001

Authorized by: Defense Systems Group

Distribution Statement A: Approved for public release; distribution unlimited.

i

Acknowledgments

The authors would like to thank all the individuals who have contributed to mission management support
to the Space Test Program (STP), Space Rapid Capabilities Office (SpRCO), and other space missions
supported by the Space Innovations Directorate (SID) over the years and have helped develop the mission
management process described in this document. Special thanks go to Peter Chang and Andrew Read for
developing the early concepts and heuristics of this approach and to Mark Jelonek, Gayla Walden, and
Kara O’Donnell for their review and feedback for improving the document.

ii

Abstract

The space enterprise is rapidly changing - presenting challenges to the Department of Defense, civil and
commercial agencies, and ultimately to the Aerospace Corporation as the premiere provider of space
enterprise mission assurance. A rapidly growing need for smaller more affordable space missions is
testing how Aerospace executes its mission assurance function. As a corporation, we are facing direction
to execute many of our missions in two- to three-year time frames, with an increased acceptance of risk
and “good enough” performance. Commensurately, there is an increased demand for a mission assurance
approach that can deliver best effort within constrained resources and shortened schedules, gracefully
accept the resulting risk, and still achieve enough system performance to meet mission objectives or
success criteria. The Aerospace Space Innovation Directorate (SID) has, for two decades, practiced a
unique approach to mission assurance that can respond to this need.

SID has an excellent track record of success with a framework that has evolved over time and is
historically anchored in the traditional Aerospace methodologies. Budget and schedule constraints have
traditionally challenged the SID team to, by necessity, adopt a more tailored approach. These practices
have continued to evolve with our customers’ pursuit of smaller, more affordable, risk tolerant missions.
Despite programmatic limitations, this approach has delivered a greater than 95% success rate for these
sorts of missions while using 2-3 STE of Aerospace support per mission per year. SID has recently begun
to document this capability, calling it a “Class Agnostic Mission Assurance Approach for Constraints-
Driven Missions.”

iii

Contents

1. Introduction ... 1
1.1 Background ... 1
1.2 Organization of TOR ... 2

2. Key Concepts .. 3
2.1 Introduction ... 3
2.2 Agile Mindset and Manifesto .. 3
2.3 Agile Mindset for Mission Assurance ... 4
2.4 Requirements-Driven and Constraints-Driven Missions ... 5
2.5 Key Mission Attributes and Concepts ... 7

3. Class Agnostic Mission Assurance ... 9
3.1 Step 1: Establish the “Knobs” of the Mission ... 9

3.1.1 Establish Mission Objectives .. 10
3.1.2 Understand Constraints ... 11
3.1.3 Decide Whether Requirements or Constraints Drive the Mission 12
3.1.4 Articulate an Initial Risk Posture .. 12
3.1.5 The “Knobs” Are Not Fixed ... 13

3.2 Step 2: Align Iterations to Project Tempo ... 14
3.3 Step 3: Identify Risks and Divergences in Context ... 15

3.3.1 Identify Risks and Divergences .. 15
3.3.2 Identify Potential Reduction Efforts ... 16
3.3.3 The Role of Peer Reviews .. 16

3.4 Step 5: Assess Efforts against Objectives and Constraints ... 17
3.4.1 Estimating Risk and Risk Reduction .. 17
3.4.2 Estimating Efforts ... 19

3.5 Step 5: Rank and Execute High Value Efforts First .. 19
3.5.1 Visualization Approaches ... 19
3.5.2 Execute Efforts ... 20
3.5.3 A Word About Messiness ... 21

3.6 Step 6: Reevaluate, Refine and Reiterate .. 21
3.7 Step 7: Capture Decisions and Lessons Learned ... 21

4. Conclusion .. 23

5. References ... 24

Appendix A. Constraints-Driven Mission Attributes and the Evolution of the Space Innovation
Directorate’s Class Agnostic Mission Assurance Approach ... 25

Appendix B. Other Applications and Illustrations of the Class Agnostic Concept 31

iv

Figures

Figure 1-1. Two decades of SID mission support. .. 1
Figure 2-1. The Agile Manifesto. .. 3
Figure 2-2. Agile Mission Assurance Manifesto. .. 4
Figure 2-3. Spectrum of Mission Assurance for Constraints and Requirements-driven missions. 7
Figure 3-1. Agile Class Agnostic Mission Assurance Approach. ... 9
Figure 3-2. System cost as a function of complexity. .. 11
Figure 3-3. Notional risk when matching mission scope to constraints. ... 11
Figure 3-4. Risk taxonomy for small satellite missions. ... 13
Figure 3-5. Mission design variables. .. 14
Figure 3-6. Alignment to Project Tempo over mission lifecycle. ... 14
Figure 3-7. The standard 5x5 risk matrix. ... 17
Figure 3-8. Simplified mission risk matrix. ... 18
Figure 3-9. Visualization example for space mission risk reduction trades. 20
Figure 3-10. Visualizing risk trades with a programmatic/technical risk matrix. 20
Figure A-1. ORS-1 mission risk assessment at launch. .. 26
Figure A-2. STP-Sat-3 mission risk assessment at launch. .. 27
Figure A-3. Spectrum of mission assurance for constraints and requirements-driven missions. 27
Figure A-4. Migration of SID missions to constraints-driven mission assurance. 28
Figure A-5. Evolution of mission assurance for constraints-driven missions. 29
Figure B-1. Initial class agnostic approach diagram. ... 31
Figure B-2. Applicability to Continuous Production Agility. .. 32
Figure B-3. Continuous Production Agility flow using class agnostic mission assurance. 32
Figure B-4. “Square” diagram of class agnostic mission assurance. ... 33
Figure B-5. “Square” diagram of class agnostic mission assurance. ... 34

1

1. Introduction

1.1 Background

SID has supported more than two dozen missions over the last 20 years servicing the USAF Space Test
Program (STP), the Air Force Research Laboratory (AFRL), the Space Rapid Capabilities Office
(SpRCO; formerly known as the Operationally Responsive Space office), and other national and civil
agencies. In supporting these programs, SID has developed a unique brand of mission assurance for
missions ranging from CubeSats to multi-manifest missions flying on Medium and Heavy launch
vehicles. Figure 1-1 is a sampling of SID supported missions showing the wide variety of partners over a
dozen different launch vehicles at multiple launch sites. This has included mission assurance for payload
and bus developments as well as their integration to launch systems. Since 2000, SID has delivered
greater than 95% mission success for these smaller risk tolerant missions within highly constrained
budgets and schedule, using 2-3 Aerospace STE per year per mission (not including the STE required for
Aerospace launch vehicle mission assurance for the NSSL launch vehicles used).

Figure 1-1. Two decades of SID mission support.

During this time, SID has evolved and refined its mission assurance approach. There is no “secret sauce,”
but there is a thoughtful approach requiring something of a shift in mindset. Although SID’s approach is
ideal for risk-tolerant (traditionally Risk Class C or D) missions constrained by budget, schedule and
other resources, there is value in employing this mindset for Class A and B missions as well. Essentially,
the SID approach addresses mission assurance from a system engineering point of view and an agile

Year Mission Launch Vehicle Launch Site Type

2000

JAWSAT
MTI

TSX-5
MightySat II.1

Minotaur I
Taurus

Pegasus
Minotaur I

Vandenburg
Vandenburg
Vandenburg
Vandenburg

Launch Integ
Launch Integ
Launch Integ
Launch Integ

2001 Kodiac Star Athena I Kodiac Launch Integ

2002

2003 Coriolis Titan II Vandenburg Launch Integ

2004 UNSat-2 Delta IV Heavy Cape Canaveral Launch Integ

2005
XSS-11
STP-R1

Minotaur I
Minotaur I

Vandenburg
Vandenburg

Launch Integ
Launch Integ

2006
COSMIC-1

STP-H2
Mintoraur I

Shuttle
Vandenburg

Kennedy
Launch Integ
Launch Integ

2007
STP-1

STPSat-1
Atlas V

"
Cape Canaveral

"
Launch Integ

Bus Dev & Integ

2008 C/NOFS Pegasus Kwajlien Launch Integ

2009 HICO / RAIDS HTV Japan Bus & Launch Integ

2010
STPSat-2
STP-S26

Minotaur IV
"

Kodiac
"

Bus & Launch Integ
Bus & Launch Integ

2011 ORS-1 Minotaur I Wallops Bus & Launch Integ

2012

2013
ORS-3

STPSat-3
STP-H4

Minotaur I
"

HTV

Wallops
"

Japan

Bus & Launch Integ
Bus & Launch Integ

Launch Integ

2014 Angels Delta IV Cape Canaveral Bus & Launch Integ
2015 DSCOVR Falcon 9 Cape Canaveral Launch Integ
2016

2017
ORS-5
STP-H5

ASETS-II

Minotaur IV
Falcon 9

X-37

Cape Canaveral
Kennedy

Cape Canaveral

Bus & Launch Integ
Launch Integ

Bus & Launch Integ

2018
EAGLE

STPSat-5
Atlas V

Falcon 9
Cape Canaveral

Vandenburg
Bus & Launch Integ
Bus & Launch Integ

2019
STP-2 (24 SVs)

STP-H6
Falcon Heavy
Falcon 9 / ISS

Cape Canaveral
Cape Canaveral

Bus & Launch Integ
Launch Integ

2020 STPSat-4 Antares / ISS Wallops Bus & Launch Integ

2

mindset that begins with the question “what is it that we are actually trying to do?” The answer to this
question is the cornerstone of the whole process upon which subsequent analyses and decisions are made.
The approach also calls for highly seasoned systems engineering skills drawing upon lessons learned
which is why it is augmented with an active lesson learned program and an “apprenticeship” program to
build good, efficient, program office systems engineers, thus deepening the bench essential for continuing
and expanding capability.

1.2 Organization of TOR

This TOR begins by exploring the Agile mindset and the concept of requirements versus constraints-
driven mission. It then describes how the Class Agnostic Mission Assurance approach borrows Agile
concepts for employing mission assurance in uncertain, constraints-driven development environments.
Finally, it provides a full description of the Agile Class Agnostic Mission Assurance approach for
extension to any mission assurance application across any risk class.

3

2. Key Concepts

2.1 Introduction

The traditional Class A, B, C, and D mission risk classification scheme can be a useful tool for
communicating the risk posture of a mission to stakeholders and bidders, but it does suffer shortcomings.
All too often, these classifications are used as a kind of shorthand for the fiscal realities of the mission
rather than a true risk posture. They tend to be monolithic, glossing over the fact that a single satellite
mission can have a mixture of risk levels – one subsystem can require Class A attention, while for another
more robust or less critical subsystem, Class D might be acceptable. Furthermore, once a risk class
designation is established, there is typically little to no linkage of that risk posture with the specifics of
program execution – there is little guidance given on which risks to mitigate or to accept given the
program’s resource constraints. The traditional class designation also ignores whether requirements or the
constraints drive the mission, and typically isn’t flexible to the changing priorities encountered during
program execution.

The Space Innovation Directorate has spent a lot of time developing and refining its class agnostic
mission assurance model for those missions that do not clearly fit into any one traditional Class A to D
construct. In refining this concept, there was a recent recognition of similarities between the SID
approach to mission assurance and the Agile Software Development movement. This section briefly
reviews Agile concepts drawing analogies between the Agile mindset and that of class agnostic mission
assurance. It also attempts to highlight Agile practices that are relevant to mission assurance.

2.2 Agile Mindset and Manifesto

Agile as we know it today was formalized in the early 2000s as a set of principles and mindsets for better
software development. On its website, the Agile Alliance describes Agile as “the ability to create and
respond to change. It is a way of dealing with, and ultimately succeeding in, an uncertain and turbulent
environment.” (Agile Alliance, n.d.) Agile software development is an umbrella term for a set of
frameworks and practices based on the values and principles expressed in the Manifesto for Agile
Software Development and the 12 Principles behind it. Figure 2-1 shows the Agile Manifesto as
described by the Agile Alliance website (Agile Alliance, n.d.).

Figure 2-1. The Agile Manifesto.

4

The 12 implementing principles behind the Agile Manifesto can also be found on the Agile Alliance
website, and include such statements as:

• Businesspeople and developers must work together daily throughout the project.

• The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity–the art of maximizing the amount of work not done–is essential.

• At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

Agile is “really about thinking through how you can understand what’s going on in the environment that
you’re in today, identify what uncertainty you’re facing, and figure out how you can adapt to that as you
go along.” All of these principles can be applied to Mission Assurance. As it says on the Agile Alliance
website, “when you think of Agile as a mindset, that mindset can be applied to other activities.” (Agile
Alliance, n.d.)

2.3 Agile Mindset for Mission Assurance

Class Agnostic Mission Assurance requires much of the same mindset as Agile. Our version of the Agile
Manifesto for Mission Assurance is shown in Figure 2-2.

Figure 2-2. Agile Mission Assurance Manifesto.

Scott Ambler of the Agile Alliance further explains the Agile Manifesto for Agile Software developments
as listed below. (Ambler, n.d.) The authors of this paper include analogies (also listed below) for
describing a similar manifesto for agile mission assurance.

Agile Software: Tools and processes are important, but it is more important to have competent people
working together effectively.

Agile Mission Assurance: Mission assurance tools and processes are important, but it is more important
to have competent people working together effectively.

5

Agile Software: Good documentation is useful in helping people to understand how the software is built
and how to use it, but the main point of development is to create software, not documentation.

Agile Mission Assurance: Good documentation is important in helping people understand risk and risk
mitigation, but the main point of mission assurance is to improve the chance of mission success, not to
document risks.

Agile Software: A contract is important but is no substitute for working closely with customers to
discover what they need.

Agile Mission Assurance: Requirements lists and CDRLs are important but are no substitute for working
closely with all partners to discover what the mission needs to do, and how best to help it succeed.

Agile Software: A project plan is important, but it must not be too rigid to accommodate changes in
technology or the environment, stakeholders' priorities, and people's understanding of the problem and its
solution.

Agile Mission Assurance: A mission assurance plan is important, but it must not be too rigid to
accommodate changes in priorities, resources, risk, and people's understanding of the mission’s
objectives.

2.4 Requirements-Driven and Constraints-Driven Missions

SID’s agile class agnostic approach also recognizes that missions are typically either requirements-driven,
or constraints-driven. When push comes to shove, missions will either let the requirements drive cost and
schedule (adding money and time to meet requirements), or missions will let cost and schedule drive
requirements (reducing scope to meet a fixed budget or schedule). The distinction between requirements-
driven and constraints-driven missions was first articulated as part of a paper at the 2018 Conference on
Small Satellites (Jasper et al., 2018), and later refined in an Institute of Electrical and Electronics
Engineers (IEEE) paper (Jasper et al., 2020).

Requirements-driven missions are focused on mission system performance with less emphasis on how
that drives budget and schedule.

A Requirements-Driven Mission is:

A mission where mission objectives / requirements drive the schedule and budget and
where objectives are typically prioritized over schedule and budget (Jasper et al., 2020,
p. 2)

This is not to say that requirements-driven missions do not need to apply due diligence with respect to
cost and schedule, but cost and schedule are typically less constrained (e.g., externally constrained launch
dates or budget figures) and achieving mission requirements is the focus. Requirements-driven missions
have more flexibility for delaying a launch or adding funding to ensure all mission requirements are met.
These missions also require a full complement of mission assurance for ensuring the highest probability
of successful system performance.

In contrast, constraints-driven missions are highly focused on achieving, within externally constrained
budgets and schedule, good enough performance that still satisfies mission objectives.

6

A Constraints-Driven Mission is:

A mission where schedule and budget are equal to, or prioritized above, the
objectives/scope. The objectives/scope are traded with, or bounded by, schedule and
budget and all three may evolve as the system is defined, designed, tested and operated.
(Jasper et al., 2020, p. 2)

Constraints-driven missions have little to no flexibility for delaying a launch or adding funding to resolve
issues that arise. Such missions risk cancellation if they exceed their budget, or risk missing their launch
if they exceed schedule. Cost and schedule are the most common constraints, but others may exist as well.
For example, there are significant volume and design constraints associated with the CubeSat form factor.
“Common bus” or standardized-architecture implementations represent another type of constraint that
will likely increase in importance as more programs embrace a production mindset. Standardization
requires compromise, and if stakeholders wish to prioritize adherence to a standard interface, they must
allow developers the freedom to trade functionality or performance requirements if needed to fit that
standard.

For constraints-driven missions, it may be necessary to reduce technical performance and/or accept
increased risk to meet program constraints. Such missions must also acknowledge that something less
than full mission success (even failure) is possible. Therefore, constraints-driven missions must
continually adjust their scope of activity to fit schedule, budget, and resource constraints when addressing
emerging risks. In other words, a constraints-driven mission will stay “within the box,” while a
requirements-driven mission has the freedom to “build its own box.”

It is essential for the mission team and supported stakeholders to decide if a mission is requirements-
driven or constraints-driven, since this will drive programmatic decisions and trades throughout the
mission development. Figure 2-3 shows a spectrum of constraints vs. requirements driven missions with
some examples that may help guide the decision.

7

Figure 2-3. Spectrum of Mission Assurance for Constraints and Requirements-driven missions.

2.5 Key Mission Attributes and Concepts

The class agnostic framework is rooted in Agile concepts, and these concepts are applicable to any
mission of any size. However, the class agnostic methodology is most applicable to missions with some
or all the following attributes.

• Missions that are partly or mostly constraints-driven. The class agnostic heuristic can apply to
both constraints-driven and requirements-driven missions, but it is most effective where missions
are willing to trade requirements and risk to remain within cost, schedule, or other constraints.

• Missions with small program offices. One of the major tenets of Agile is that it requires small,
high-performing teams working closely together. In large program offices with many
organizational layers, the sheer size and complexity of the program and its staffing profile makes
close communication and coordination difficult. Such missions typically also have the budget to
conduct a full independent mission assurance effort, and class agnostic mission assurance may be
less appropriate.

• Missions for which less than 100% mission success is an option. A critical launch is a good
example of a mission with very few options for less than 100% mission success – it either makes
it to orbit, or it doesn’t. The heuristic can be applied to missions for which full mission success is
the only metric that is “good enough,” but in that case it is very similar to traditional Class A
mission assurance.

Additionally, the class agnostic mission assurance approach relies on several key concepts.

• Mission assurance is anything that improves the chances of mission success. In constraints-driven
missions, risk is often accepted to remain within program constraints, and a guarantee of mission

8

success is rarely possible. In this context, class agnostic mission assurance seeks to maximize,
rather than guarantee, the chances of mission success within the available cost, schedule, and
resource constraints.

• Mission assurance is not the purview of any single organization. Everyone involved in the
mission – the government program office along with its contractor, SETA, and Aerospace
support – makes up the mission assurance function. In most applications of the class agnostic
heuristic, mission assurance is the collective effort of the entire team, not one of independent
oversight. Mission assurance need not be independent to be objective.

• Efficient mission assurance requires mentorship. When mission assurance efforts are constrained
by limited resources, engineers need to have good instincts, so they can spot the issues faster and
exercise good judgement in prioritizing activities. Pairing novice engineers with more
experienced engineers (like pairing an apprentice with a master) helps generate new seasoned
engineers with the right instincts.

• Class agnostic mission assurance tailors “up.” Traditional mission assurance approaches start
with a “Class A” requirements-driven approach and tailor back. This is less appropriate for highly
constrained missions, which start with the most basic “Do No Harm” level of mission assurance
(Read et al., 2016) and then add on what is needed and desired by the stakeholders to reach the
final risk posture approach. Starting at a “Class A” approach and tailoring back is not only
extremely cumbersome for resource-constrained missions, it also provides no fallback position
should program realities change.

Appendix A discusses the typical characteristics of constraints-driven missions, and the evolution of the
tailored mission assurance concepts in general, in more detail.

9

3. Class Agnostic Mission Assurance

The Agile Class Agnostic Mission Assurance approach is a heuristic approach that focuses assurance
efforts based on specific risks to mission objectives. As summarized above, it borrows concepts from
agile software development to scale and manage mission assurance efforts according to the needs of the
program. It accommodates changes in mission scope, risk posture, and priorities as the mission
development evolves.

The result is a more appropriate application of limited resources across the mission, and a more realistic
expectation of mission success that ultimately supports Certification of Flight Readiness (CoFR) at
launch.

Figure 3-1 illustrates the overall approach. A more detailed discussion of the steps to this approach
follows.

Figure 3-1. Agile Class Agnostic Mission Assurance Approach.

3.1 Step 1: Establish the “Knobs” of the Mission

To successfully apply the class agnostic heuristic programs must understand not only the goals of the
mission, but also the constraints (schedule, cost, resources, etc.), and the relationship between them. This
includes not only developing an idea of what minimum mission success might look like, but whether the
scope of the mission matches this vision, and what level of risk the program is willing to accept, at least
initially.

10

3.1.1 Establish Mission Objectives

The first step is to explore the mission's objectives. On some programs the objectives might be obvious at
inception, but on other programs, the situation might be more subtle (or opinions might differ between
stakeholders and developers). Many methods for defining and communicating the mission scope are
viable; options might include one, or multiple, of the following: metric-based initial success criteria,
minimum viable product (i.e., the minimum capability the spacecraft could fly with), use-case and user-
story creation, requirements definition and derivation, or experiment plan and concept of operations.

As an example, the STPSat-1 mission team developed a very concise and specific list of minimum,
nominal, and goal objectives, as follows:

• Minimum mission success:

- Take at least four SHIMMER data collects and download the associated data with a data
quality of 99.5%.

- Perform at least 60 hours (not required to be consecutive) of CITRIS operations.

• Nominal mission success:

- Perform four SHIMMER data collects per day, for at least 300 days over the mission
year. Download all experiment data with a data quality of 99.5%.

- Operate CITRIS continuously over the mission year. Experience no more than 60 days (not
consecutive) of lost experiment time.

• Maximum mission success:

- Perform eight SHIMMER data collects per day, for at least two years. Download all
experiment data with a data quality > 99.9% (this was actually achieved).

- Operate CITRIS continuously for two years with no more than five lost days (close, but no
cigar).

Jasper, Braun, and Hunt provide another example – a risk-reduction mission for a high-speed
communications system (HSCS) – which establishes the following objectives, in priority order (Jasper et
al., 2020):

1. Minimum: File transfer downlink. This is the primary use of the HSCS for the large mission
2. File transfer uplink
3. Full data rate for file transfers
4. Command uplink through HSCS
5. Communication established at multiple ground sites on orbit
6. Goal (not in baseline): Telemetry downlink through HSCS

The Air Force Research Laboratory has several similar examples of success criteria in their configuration
processes (AFRL/RV, 2020).

These examples capture the essence of the class agnostic concept of objectives: not so much a
requirement list as a story or a set of statements about what the mission is supposed to do. The objectives

11

can include minimum, baseline, and goal criteria, but should be concise – ideally not more than one
briefing chart. For constraints-driven missions, it can be particularly important to define what constitutes
“minimum functionality” – i.e., what is “good enough” to launch?

3.1.2 Understand Constraints

Having identified the mission objectives, the team can now begin identifying the mission’s constraints,
such as cost, schedule, resources, size, etc. These are usually straightforward to list, but harder to match
appropriately to the mission scope. The team must make realistic assessments as to whether objectives
and constraints match each other. Figure 3-2 (Bitten et al., 2013) and Figure 3-3 illustrate the risk incurred
when stakeholders have lofty expectations for a heavily resource-constrained missions. A $1M CubeSat is
unlikely to deliver the performance or reliability of a $100M larger satellite, and the program should not
expect such miracles unless it is willing to pay for them. One of the major lessons learned from studies of
CubeSats is to ensure that missions are scoped appropriately for the vision (Venturini, 2017).

Figure 3-2. System cost as a function of complexity (Bitten et al., 2013).

Figure 3-3. Notional risk when matching mission scope to constraints (Venturini, 2017).

$1M
CubeSat,

<18 month
schedule

$50M
ESPA,
3 year

schedule

$500M
Prime

$1B
Exquisite

Low SWAP,
single instrument,

1 year life,
benign orbit

Medium
SWAP, several

instruments,
3 year life

High SWAP,
harsh orbit,
5 year life

High SWAP,
exquisite

measurements,
critical mission,

10 year life

High
Risk

Low
Risk

Wasted
Effort

Fe
w

er
 C

on
st

ra
in

ts

Greater Complexity

12

3.1.3 Decide Whether Requirements or Constraints Drive the Mission

Once the objectives and constraints of the mission are described, the program and its stakeholders should
jointly decide whether the mission is predominantly requirements-driven or constraints-driven. As
described earlier, a requirements-driven mission will prioritize meeting mission objectives over staying
within cost and schedule (or other mission constraints), while a constraints-driven mission is willing to
sacrifice objectives to stay within strict cost, schedule, or other limitations such as those imposed by the
CubeSat form factor or other standard architectures.

The requirements-driven / constraints-driven distinction is fundamental to successful communication
among stakeholders and developers. Stakeholders and developers should agree up front on whether the
mission is requirements-driven or constraints-driven, and this decision should be revisited often – and
formally overturned if necessary. Too many missions claim to be constraints-driven when the initial
budget is set but become more and more requirements-driven as launch approaches.

3.1.4 Articulate an Initial Risk Posture

Developers and stakeholders should jointly understand the initial risk posture of the mission. Risk can
arise from objectives and constraints that do not match each other (as described in Section 3.1.2); it can be
part an active decision to attempt something new and unproven; it can arise from programmatic decisions
to trade assurance for some other desirable attribute (rapid development, spiral development, etc.); or it
can simply be part of the team’s mindset. But it should be part of the entire team’s mindset since
experience from past CubeSats (and small satellite missions) shows that stakeholders and developers will
sometimes have different concepts of the risk posture of the mission. (Venturini et al., 2018)

In the past, customers have used traditional Class A/B/C/D designations to denote risk tolerance
categories and such designations can still be used (Johnson-Roth & Tosney, 2010). However, few
missions truly fit within a single, neat risk category (i.e., all within Class A, B, C or D). For these
missions, other methodologies allow tailoring of risk level by subsystem or specialty engineering. This
approach allows missions to focus their mission assurance on areas of higher criticality, while accepting
more risk in lower-criticality areas. Alternatively, it allows programs to pay more attention to areas that
are less mature, and less attention to areas that have heritage (Taylor et al., 2019). Additionally, the
traditional designations for the Class A/B/C/D risk posture paradigm may have a risk “floor” that is too
high to reap the full benefits of low-cost, risk-tolerant missions. Recent work has provided a sub-class-D
taxonomy that provides a useful vocabulary for stakeholders and developers to use when discussing risk
posture for highly risk-tolerant missions. Figure 3-4 summarizes this taxonomy, and more details can be
found in the referenced paper (Jasper et al., 2018).

13

Figure 3-4. Risk taxonomy for small satellite missions (Jasper et al., 2018).

Starting at the minimum level of functionality of Do No Harm (basically, accomplishing only the
assurance required to comply with launch and safety requirements) and tailoring up can be particularly
helpful for smaller, more risk-tolerant systems. These lower levels of assurance also provide a fallback
position for when the risk “knob” needs to be turned in response to changing circumstances.

Regardless of the specific label used, the overarching goal of the initial risk posture is to communicate,
not to rigidly classify. The risk posture of the mission rarely stays fixed throughout a mission. Even
requirements-driven missions are sometimes forced to accept risk, and it’s a common experience for
developers to encounter missions that are constraints-driven at kickoff – but requirements-driven at
Launch Readiness Review. Or as one of the authors famously stated, “everyone is willing to tolerate risk,
but no one is willing to accept failure.”

3.1.5 The “Knobs” Are Not Fixed

The items described above in sections 3.1.2 through 3.1.3 – loosely categorized as technical requirements,
risk posture, cost constraints, and schedule constraints – represent “knobs” for mission execution (See
Figure 3-5). Depending on the mission objectives and constraints, each of these “knobs” may be fixed or
variable – stakeholders may be more willing to adjust cost and schedule to meet requirements or may be
more willing to relax requirements and accept risk to meet cost and schedule. The settings may also
change during the progression of the program. However, missions cannot expect all four knobs to remain
fixed for the duration of the mission. No program is without issues or changes, and the knobs represent
the program’s flexibility to absorb changes and address issues. Requirements-driven missions will
generally aim to solve technical issues keeping a low risk tolerance while accepting cost and schedule
changes whereas constraints-driven missions will address technical issues by reducing scope or accepting
additional risk to stay within cost and schedule constraints.

14

Figure 3-5. Mission design variables.

Early designations of mission risk tolerance before any real knowledge of the technical issues that will
arise during development (and the stakeholders’ willingness to tolerate those risks) can therefore be
baseless. Mission assurance approaches that rely on fixed assumptions are not flexible to the uncertainty
in the mission.

3.2 Step 2: Align Iterations to Project Tempo

It is important to recognize that this is an agile and iterative approach. The full cycle is aligned with the
project tempo, ideally takes no more than a few weeks, and is continually repeated. This carries through
major milestones and ultimately delivers Certification of Flight Readiness (CoFR) at Flight Readiness
Review (FRR). Figure 3-6 shows the iterative nature of this agile approach in context of the full mission
life cycle.

These iterations optimize mission assurance activity based on the risks to mission success objectives as
you go. It also burns down risk to an acceptable level within the overall mission risk tolerance that is
agreeable and well understood among stakeholders thus creating more realistic expectation of mission
success for supporting CoFR. The first cycle will likely take longer than those following since more time
is required for establishing a baseline of risks, divergences, and responses.

Figure 3-6. Alignment to Project Tempo over mission lifecycle.

15

3.3 Step 3: Identify Risks and Divergences in Context

Once the mission’s initial “knobs” are established, the program can begin to think about risk. Loosely
speaking, risks are anything that might cause the program to adjust one of its knobs. When thinking about
risk, mission context is important. For example, a lack of battery conditioning might not be a risk for a
one-year LEO mission, while it likely poses a significant risk to a ten-year GEO mission. Similarly,
contamination can be a significant risk to some missions, and not to others. The orbit, lifetime, and intent
of a mission provides the context within which to evaluate risk.

3.3.1 Identify Risks and Divergences

Programs will generally want to conduct an initial assessment of the risks of a mission. There are many
tools and frameworks for identifying risk areas and common pitfalls. General examples for guidance are
ISO 17666, Space Systems Risk Management; the Risk, Issue, and Opportunity Management Guide for
Defense Acquisition Programs; and NASA NPR 8000.4, Agency Risk Management Procedural
Requirements. The initial risk assessment is also where a “blitz” of Aerospace attention from subject-
matter experts (if the program can afford it) can be especially effective.

Approaches to identifying high-risk areas of a mission such as those described in Section 3.1.4 can also
provide an initial idea of where a program needs to focus its attention. Areas to consider include:

• Generally-agreed-upon critical areas (e.g., power, communication, Do No Harm, safe modes,
interfaces)

• Areas of specific concern for this mission (contamination, EMI, radiation, non-space parts,
previous failures)

• New items (first flight, changes from last time)

• Items from the Mission Assurance Baseline (MAB) or tailored MAB

• Lessons learned / “gold rules” (software, polarity, test like you fly)

• Expert opinion and experience

The risks that emerge from this initial pass typically represent known and “known unknown” risks. The
“unknown unknowns” will generally emerge during the execution of the program. The mission assurance
approach needs to be flexible enough to adjust.

The team should always keep the context of the mission in mind. Something that is a risk for a system
with a 10-year lifetime might not be a risk for a mission with a lifetime of one year. Remember that
success is not always binary. Limited or degraded system performance may still achieve mission
objectives. There is always a range of risk trades and dispositions that can be exercised to achieve the
optimal operational performance within the mission constraints. It may be possible to accept risk that only
degrades performance or threatens performance that is marginally important to the mission objectives.

The result of the initial assessment is often a full laundry list of issues, deficiencies, and risks from
various disciplines, but this initial assessment is just the beginning. It is important to keep in mind that
risk lists (like requirements lists) are products of the human imagination and thus never guaranteed to be
complete, self-consistent, or fully accurate. Programs must revisit the risk assessment process frequently,
as part of agile design, build, and test iterations, preferably at the start of each iteration.

16

3.3.2 Identify Potential Reduction Efforts

Once risks are identified, the team should consider both specific and overarching risk reduction efforts.
These can be specific actions, like the following:

• Investigate GPS dropouts over the poles and recommend firmware updates

• Add a modal survey test to the test campaign

• Add a redundant receiver to the design

• Add Reed-Solomon encoding to the downlink

• Test all COTS parts upon receipt

They can also be more overarching, general activities, like the following:

• Analyze the thermal performance

• Review all ICDs for discrepancies

• Witness testing

• Validate Do No Harm artifacts

• Add a review or a standing meeting with high-risk mission element representatives

• Plan for a two-week review of some mission deliverables in the mission schedule to allow for
subject-matter expert input as necessary

Missions should start with broad concepts and refine as necessary. Early in the program, risks are
generally broader and based on general principles; later, risks become more specific and are more often
related to observed failures or deficiencies. The team should tie reduction efforts to specific risks where
possible, but this doesn’t have to be a one-to-one mapping. While the team should take care to make the
risk statements crisp and actionable, the team should remain flexible and avoid getting hung up on
specific details. The goal is to understand if constraints will be violated or objectives may not be met (e.g.
mission success), not to achieve exquisite risk documentation.

The first risk list is never complete; indeed, the latest risk list is also never complete. The power of agile
iterations is that it allows risks that weren’t identified in earlier iterations to be uncovered in later
iterations, and the program evolves toward completion.

3.3.3 The Role of Peer Reviews

Although not required by the class agnostic heuristic, many programs find peer reviews helpful in the risk
identification step. Peer review serves two primary purposes: (1) to provide technical input for the team
on their design, and (2) understand risks as they emerge. These reviews can be small one-on-one meetings
or subject matter expert / team interactions, but the key is that they serve to provide the engineers
actionable feedback. Ideally some external reviewers participate to provide perspective and reduce
groupthink.

17

The team can use these peer reviews to adjust their designs as necessary and to identify potential
divergences from the current scope or constraints. These possible divergences should be actionable,
tradeable risks – not “paranoia” or “what-if” exercises.

3.4 Step 5: Assess Efforts against Objectives and Constraints

Once the team has the initial – or most recent iteration – of the risk list, it’s time to estimate the level of
each risk and the amount of reduction possible, as well as the effort required to conduct each risk
reduction action. The amount of risk reduction expected for each mitigation action, and the effort
estimated for each action, help the team estimate the “bang for the buck” of each action – an estimation
central to the class agnostic concept.

While several frameworks are discussed here, teams should keep the Agile mindset in mind. The goal of
assessing risks and efforts is to apply resources where they will do the most good – not to produce perfect
estimates, or perfect risk analysis charts. In many missions, the whole effort is rather informal. The
estimates are made to inform decision-making, not to make statistical predictions. Documentation should
be focused on providing the rationale behind the decisions made, rather than on achieving a certain
“magic number” of risks or an exact estimation of “bang for the buck.”

In all cases, keep the context in mind – the program’s objectives, constraints, and risk posture will drive
the estimation process. A high risk on a Requirements-driven mission might be a baseline risk on a
Constraints-driven mission.

3.4.1 Estimating Risk and Risk Reduction

Teams frequently get hung up in quantifying risk. The standard 5x5 risk matrix shown in Figure 3-7
provides a useful tool for identifying risk levels by likelihood and consequence, but has pitfalls.

Figure 3-7. The standard 5x5 risk matrix (Guarro, 2011).

Chief among these pitfalls is the tendency to view the numerical numbers on the axes as statistically
significant, data-driven values. Some risks can be quantified in this manner, but on one-of-a-kind
missions, the team is unlikely to have enough real data to be able to give a statistically solid number for
the true likelihood of an event. This is especially true on constraints-driven missions, and research and

18

development missions, for which the true likelihood of failure is unknown. Another pitfall is the tendency
for risks to span categories across the 5x5 risk matrix. A single issue – for example, the failure to conduct
a true “week in the life” test – may be relatively likely to result in minor issues, but relatively unlikely to
result in severe issues. Real risks don’t adhere to simple categories and trying to force-fit them into their
exact box usually wastes a lot of time and effort that could instead be focused on resolving issues.

Instead, the class agnostic heuristic recommends adopting a more Agile mindset to risk estimation. Teams
may choose to use the 5x5 risk matrix, but except for very clear-cut, quantitative risks, teams should
consider the numerical values in the risk matrix as guidelines. Different stakeholders may have different
interpretations as to what each of the “likelihood” categories mean; one may consider something likely if
it occurs about 10% of the time; another might consider something likely only if it occurs more than 50%
of the time. The use of numerical values helps define what each of the likelihood categories means in a
way that can be understood by all stakeholders. In most cases, however, they should not be interpreted as
a statistically evaluated numerical estimation.

Some programs – especially smaller, constrained programs – might consider a simplified 2x2 risk matrix,
instead, as shown in Figure 3-8. While this might seem oversimplified, it helps programs quickly
categorize major risks and focus their efforts on mitigating – rather than categorizing – them.

Figure 3-8. Simplified mission risk matrix.

Teams may also consider using other Agile methods like “planning poker” to estimate broad risk levels –
whether a given risk is high, medium, or low – or can be used to estimate where a risk should fall on each
axis the 5x5 risk matrix. Planning poker offers an informal less structured method that uses a game-like
format to avoid bogging down while leveraging the full knowledge of the team. (Agile Alliance, n.d.)

Whatever method is chosen, teams must not only estimate the current risk level, but also the risk
reduction made possible by each proposed mitigation action. This can be accomplished by showing the
risk reduction on the 5x5 risk matrix as shown in Figure 3-7, or by playing planning poker again on while
envisioning the end state. The difference between the “before” and “after” risk levels provides an estimate
of risk reduction.

19

3.4.2 Estimating Efforts

Teams will also need to estimate how much effort is required to conduct each proposed risk mitigation
action. These include broad actions, such as reviewing ICDs and witnessing testing, and specific actions,
such as adding extra tests or making software / hardware changes.

One of the drawbacks of the 5x5 risk matrix is that it focuses only on the risk, not on the effort required to
mitigate that risk. Especially for resource-constrained missions, risk reduction must take place in the
context of the effort required. The most effective risk-reduction method is worthless if it results in
program cancellation due to lack of funds.

Estimating the effort involved can include a simple guess at the number of staff-days or staff-weeks and
cost involved, or it can involve another round of Agile “planning poker,” where the focus is on the
amount of effort it will take to implement the proposed mitigation action. (Indeed, Agile planning poker is
most commonly used for effort estimation.)

3.5 Step 5: Rank and Execute High Value Efforts First

Once risks and actions have been defined, and the effort to accomplish each estimated, the team evaluates
the “bang for the buck” for each risk / action set and ranks them in a method that allows the team to
decide how to apply its mission assurance efforts.

It can do this by evaluating the ratio between technical risk reduction and programmatic risk increase for
doing any given action. Technical risk is defined as risk against the already-established scope, as
estimated in Step 3; programmatic risk is defined as risk against the cost, schedule, and resource
restrictions already defined. In some heavily resource-constrained missions, the ratio might be inverted,
and the team might instead consider the programmatic (cost or schedule) risk reduced for the technical
risk incurred. For example, a typical trade in a constraints-driven program is to remove a secondary
mission objective in order to maintain cost and schedule.

With the ratios defined, the team now ranks risk reduction, mission assurance, or even design efforts in
order from most “bang for the buck” to least “bang for the buck”. Note that the elements are not ranked in
order from “highest risk” to “lowest risk,” or even from “highest risk reduction” to “lowest risk
reduction.” The effort required to implement an objective or reduce risk is part of the assessment. “Low
hanging fruit” may fall higher on the list than more serious risks that are harder to mitigate or more
interesting objectives that consume more resources. The sum of the effort required to implement these
actions (the sum of the programmatic risk) tells the program how many resources are required.
Constrained programs will need to draw the line at the limit of their resources; items that fall below the
line are not addressed unless more resources become available. Then the team executes the efforts
roughly in order.

3.5.1 Visualization Approaches

One way to visualize this would be in a table of risk reduction efforts, listing the estimated amount of risk
reduction, the confidence in that estimate, the estimated cost or effort required, and the confidence in that
estimate. Figure 3-9 is a notional example.

20

Figure 3-9. Visualization example for space mission risk reduction trades.

Missions could use similar charts to show how their reduction efforts reduce their risk to match their
overall risk posture – or where the cost of such efforts run up against the “hard line” of the resources
available.

This is just one way to rank and execute risk reduction efforts. Missions may choose instead to do
something simpler, like plotting risks along a programmatic / technical risk matrix as shown in
Figure 3-10. Missions can then determine which actions to prioritize based on where they fall along
green / yellow / red boundaries the team has drawn itself.

Figure 3-10. Visualizing risk trades with a programmatic/technical risk matrix.

3.5.2 Execute Efforts

With risk and risk-reduction efforts identified, ranked in order from most “bang for the buck” to least
“bang for the buck,” and discussed within the program, the team can now execute the efforts they have
agreed provide the best mission assurance value.

ID
Item

(Risk / Opportunity / Issue / Trade) Description / Story Response / Action Benefit*
Benefit

Confidence
Cost Margin

Impact
Cost

Confidence
Sched Margin

Impact (weeks)
Schedule

Confidence Execute?
R-001a Software Risk #1 Potential delay to schedule Add to WITL with time to follow-up 20 High $ 150,000 Medium 2 High Yes
R-001b Software Risk #1 Potential delay to schedule Add Software peer review 40 High $ 35,000 High 1 High Yes
I-001a IR Focal Plane Weld Cracks IRFPA design welds show cracking Correct Welding Process 40 Medium $ 30,000 High 8 Low No
I-001b IR Focal Plane Weld Cracks IRFPA design welds show cracking Inspect Welds 20 High $ 25,000 High 14 Medium No
I-001c IR Focal Plane Weld Cracks IRFPA design welds show cracking Mechanical Clamping 8 High $ 30,000 High 2 High Yes
I-002a Finite Element Model FEM not correlated; potential for

structural failure
Add modal survey test

40 High $ 250,000 High 4 High Yes

I-002b Finite Element Model FEM not correlated; potential for
structural failure

Add extra accelerometers to sine vibe
testing

8 Medium $ 25,000 High 1 Medium No

O-001a New OS for Software Opportunity Could boost performance by 20% Build portability to new OS 3 Medium $ 50,000 Medium 2 Medium No

Margin Used = 93% Margin Used = 75%

21

3.5.3 A Word About Messiness

Mission assurance and risk management are rarely simple and elegant. The ranked risk list is a nice
theory, but messier in practice – it is unlikely the mission will have a clean list of tasks in a neat order. In
fact, like many of the other steps in the class agnostic heuristic, most of the authors have never actually
produced an official ranked risk list but have instead operated on an intuitive feel for where assurance
efforts provide the most bang for the buck.

Agile mission assurance is an art as much as it is a science. Teams should remember the Agile mindset,
and that the main point of mission assurance is to improve the chances of mission success, not to
document risks. Agile values individuals and interactions over processes and tools, and customer
collaboration over checklists. If the tool or process doesn’t work for your mission, use a different one!

3.6 Step 6: Reevaluate, Refine and Reiterate

The most critical part of the class agnostic mission assurance process, and the most related to Agile
principles, is Step 6: Re-evaluate and Refine. As described in previous sections, early estimates of risk are
usually the least accurate, and correspondingly, mission assurance plans developed early in mission
execution are rarely applicable throughout the mission lifecycle. As a mission progresses, priorities will
change, and new risks and issues will emerge. Some efforts will take more resources than expected, and
some efforts will take fewer resources than expected. On a regular basis – whether that be after a two-
week “sprint,” monthly, or quarterly – the team meets to determine what has been done, what remains to
be done, whether priorities have changed, or whether new information has emerged that might cause the
team to re-direct mission assurance activities. If the mission is still operating within the agreed-upon cost,
schedule, requirements, and risk posture “knob values,” this can be done internally to the team. Having
agreed upon the next set of priorities (or that the current efforts should continue), the team embarks on the
next iteration through the cycle.

If enough issues have arisen that one of the “knobs” needs to be adjusted, the government, contractor,
Aerospace team should engage leadership and, if necessary, key stakeholders. Leadership may, in
discussion with stakeholders, adjust the constraints of the mission, adding funds and schedule or reducing
scope and accepting more risk, in order to absorb the changes that arise. This is where communication
with stakeholders can be key. Programs may delegate decision authorities differently depending on the
size and criticality of the mission, but in general, only leadership and / or mission stakeholders can change
one of the “knobs” of a mission. At a minimum, programs will need to inform leadership and key
stakeholders if adjustments to the knobs are necessary.

Teams may use the Agile class agnostic cycle in the context of mission milestones. For example, a team
might make use of peer reviews after every few sprints to identify areas of concern and point out where
design and mission assurance efforts might be overlooking key risks. A larger examination of the overall
“knobs” of the mission might occur at major programmatic reviews, when developers, leadership, and
stakeholders can all meet to review program status and decide if any of the “knobs” need to be adjusted.

3.7 Step 7: Capture Decisions and Lessons Learned

During the execution of the class agnostic mission assurance cycle, teams should look both inward and
outward. Within the mission, teams should document all decision-making. As decisions, trades, and
adjustments to the “knobs” of the mission are made, it is critical that teams capture the rationale behind
these changes. Not only does this help maintain continuity across personnel and leadership changes, it
helps prevent “risk aversion creep” by keeping the entire team aware of what trades have already been
made between cost, schedule, risk, and requirements – and why. This history is particularly important as

22

the mission approaches launch, when cost and schedule risks are all in the rear-view mirror, and
leadership is most concerned with technical risk.

Additionally, missions should be outward-looking, and should document lessons learned frequently
during mission execution. Capturing lessons learned after a certain number of “sprints,” or at a minimum
at each major milestone, ensures that lessons are documented while they are still fresh. Reviewing key
lessons learned from past missions at each milestone can also help the team anticipate problems that
might occur during the next phase. Lessons-learned become sources for evaluating risks for future
missions (see section 3.3.1).

While process documentation, lessons learned, and reference material are important, truly efficient
mission assurance requires apprenticeship. Documents and “how to” manuals have their place but are no
substitute for experience. Young engineers should be paired with experienced engineers to help them
develop good instincts.

23

4. Conclusion

Like all Agile approaches, the class agnostic mission assurance heuristic is a living process, and the
approach outlined here is not meant to be prescriptive. Appendix B illustrates how variations of this
approach have been tailored to specific customers and programs, and future programs considering a more
agile approach to mission assurance should consider how the class agnostic approach might best apply to
them.

Even within the execution of the class agnostic mission assurance cycle, program managers and the
mission assurance team will need to continuously evaluate what is working for them, and where
improvement is needed. Rarely will any given mission follow the process outlined here in its entirety,
with formal risk evaluations and a formal list of efforts to be executed in a strict order. Teams are
encouraged to “embrace the messiness” of the process, and recognize that good mission assurance is an
art, not a science (or a checklist). The Agile mindset encourages teams to re-evaluate processes regularly
and discard those that don’t work, and this approach is no exception.

It is the hope of the authors that the class agnostic heuristic presented here will encourage the mission
assurance community to think outside the Class A-D box for holistically addressing technical risks as we
strive towards the goal of properly balancing risk mitigation within a programmatically constrained
environment. The authors also hope that mission teams will take on the challenge of adapting and
evolving this approach, developing their own tools and approaches, and sharing their findings with the
rest of the community.

24

5. References

[1] Agile Alliance. (n.d.). Agile 101 - What is Agile Software Development? Retrieved October 13,
2020, from https://www.agilealliance.org/agile101/

[2] Ambler, Scott. (n.d.). Examining the Agile Manifesto. Retrieved October 13, 2020, from
http://www.ambysoft.com/essays/agileManifesto.html

[3] Bitten, R., Mahr, E., Kellogg, R. (2013). Cost Estimating of Space Science Missions (Report No.
ATR-2013-00108). The Aerospace Corporation.

[4] Department of Defense. (2017). Risk, Issue, and Opportunity Management Guide for Defense
Acquisition Programs. http://acqnotes.com/wp-content/uploads/2017/07/DoD-Risk-Issue-and-
Opportunity-Management-Guide-Jan-2017.pdf

[5] Guarro, S. B. (2011). Mission Risk Assessment Process and Techniques for APR (Report No. ATR-
2012(9012)-1). The Aerospace Corporation.

[6] International Organization for Standardization. (2016). Space Systems - Risk Management (ISO
Standard No. 17666:2016). https://www.iso.org/standard/33149.html

[7] Jasper, L., Hunt, L., Voss, D., and Jacka, C. (2018, August 4-9). Defining a New Mission Assurance
Philosophy for Small Satellites [Paper No. SSC18-WKII-05]. 32nd Annual AIAA/USU Conference
on Small Satellites, Logan, UT, USA. https://digitalcommons.usu.edu/smallsat/2018/all2018/431/

[8] Jasper, L., Braun, B., and Hunt, L. (2020, March 8-13). New Constraint-Driven Mission Construct
for Small Satellites and Constrained Missions [Paper presentation]. IEEE Aerospace Conference,
Big Sky, MT, USA.

[9] Johnson-Roth, G., Tosney, W. (2010). Mission Risk Planning and Acquisition Tailoring Guidelines
for National Security Space Vehicles (Report No. TOR-2011(8591)-5). The Aerospace Corporation.

[10] National Aeronautics and Space Administration (NASA). (2017) Agency Risk Management
Procedural Requirements. (NPR 8000.4B).
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8000&s=4B

[11] Read, A., Chang, P., Braun, B. Voelkel, D. (2016). Rideshare Mission Assurance and the Do No
Harm Process (Report No. TOR-2016-02946). The Aerospace Corporation.

[12] Taylor, A., Becklund D., Rast S., Ayers J. (2019). Adaptive Mission Assurance Strategy for Pre-
Acquisition: Phase 1 (Report No. TOR-2019-01781). The Aerospace Corporation.

[13] US Air Force Research Laboratory Space Vehicles Directorate AFRL/RV (2020). Configuration
Management (CM) and Configuration Control Board (CCB) Process Version 4.0.

[14] Venturini, C. (2017). Improving Mission Success of CubeSats (Report No. TOR-2017-01689). The
Aerospace Corporation.

[15] Venturini, C., Braun, B., Hinkley, D., Berg, G. (2018, August 4-9). Improving Mission Success of
CubeSats [Paper No. SSC18-IV-02]. 32nd Annual AIAA/USU Conference on Small Satellites,
Logan, UT, USA. https://digitalcommons.usu.edu/smallsat/2018/all2018/431/

25

Appendix A. Constraints-Driven Mission Attributes
and the Evolution of the Space Innovation Directorate’s

Class Agnostic Mission Assurance Approach

A.1 Constraints-Driven Mission Attributes

A.1.1 Program Attributes

Small, risk-tolerant, constraints-driven missions are distinct from ACAT 1, Risk Class A Missions that
demand greater system reliabilities for operational availability and resilience. It is these distinctions that,
when leveraged, enable the efficiencies necessary for meeting mission success objectives within
constrained resources and schedule.

Programmatically, these missions are typically smaller systems for
demonstration, technology maturation, and / or deploying a small
component of an overall capability where resilience is delivered at the
architecture level. They possess fewer requirements, condensed
management teams, and a necessity to trade system performance
requirements and risk for a return in cost and schedule benefit.
Customer mission managers and their leadership must be willing to
accept additional risk. Most importantly, the mission team must have
the freedom to fail.

Contractually, efficiencies are needed for remaining within
constrained budgets and schedules. Efficiencies are realized by
leveraging developer processes, tailoring statements of work and
limiting mission assurance deliverables to only that which is critical
to achieving good enough performance that still meets mission
objectives. A low risk tolerant mission team pursuing full system
performance could never execute “Class A” mission assurance
without contracting for the appropriate developer support and
deliverables. Similarly, a mission team operating on a shoestring
budget and accelerated schedule cannot contract for a full
complement of mission assurance support and deliverables. Since
mission success is defined by objectives rather than system
performance, it would be inefficient to purchase support and
deliverables that provide only diminishing returns when good enough
performance is adequate. Finally, smaller mission teams will rarely
have the additional time or people to properly assess a full complement of support and deliverables
anyway.

A.1.2 Technical Attributes

Looking at system design, the small, risk tolerant space vehicles are usually single string systems
designed for a one to three-year design life with acceptable mission reliabilities ranging between 40% and
90% over a one-year mission life. These systems can, most of the time, tolerate operational down times
but also have a built-in capability for failing gracefully into a known state for recontact, troubleshooting,
anomaly resolution, and reboot of the system. This is why simply trying to tailor Class A standards and
prescriptive requirements for an existing Class A designed system will not result in the same cost and
time savings as for starting with a streamlined design in the beginning.

26

For manufacturing, developers tend toward a higher usage of commercial parts. There is rarely a spares
concept beyond that of sparing at the system level; the space vehicle itself. In the case of large
constellations of smaller satellites, the satellites themselves are the sparing concept since capability is
delivered at the architectural level. This is the case for CPA which is discussed later. Small satellite
ground systems, typically servicing multiple satellites at a time, will usually have a sparing concept for
ensuring availability.

A.2 Constraints-Driven Risk Tolerance

Constraints-driven missions must accept risk and manage that risk along with stakeholder expectations of
mission success. There is almost always a willingness to accept risk at the start of a mission development
that gives way to an unwillingness to accept mission compromise or failure at launch. Constraints-driven
missions still rigorously manage risk, but they accept the reality of significant residual risks given
constraints on budget and schedule. This includes the possibility of accepting medium to high residual
risks at launch. It may make more sense to launch with a 50% chance of success today than to accept a
0% chance if the team misses a rideshare opportunity or if mitigation costs threaten mission cancellation.
Shown here are two missions and their risk matrices at launch.

ORS-1 is a great example being schedule constrained due to a warfighter urgent need. In Figure A-1, one
can see that there were significant risks, including red & yellow risks, at launch which indicates the
increased risk tolerance of the ORS-1 program. It was better to launch with a red risk than deny an urgent
capability to the warfighter. In fact, the red risk identified was accepted at the beginning and despite this,
ORS-1 launched after a three-year development and was successful on orbit.

Figure A-1. ORS-1 mission risk assessment at launch.

STPSat-3 is another example being budget constrained. In Figure A-2, one can see that there were many
risks, including yellow risks at launch also indicating an increased risk tolerance. This mission also
launched after a three-year development and was successful on orbit.

27

Figure A-2. STP-Sat-3 mission risk assessment at launch.

A.3 Spectrums of Mission Assurance

Figure A-3 is a quad chart that shows the spectrum of constraints versus requirements driven missions
along examples for those types of missions.

Figure A-3. Spectrum of mission assurance for constraints and requirements-driven missions.

In the upper right, there are traditional Class A/B missions, where requirements drive the mission.
Though everyone aims to launch on time and on budget, in the end, for these types of missions, the
requirements are not compromised.

28

At the other extreme are the many typical CubeSats. Usually built by universities, CubeSats often
rideshare along with other primary missions, and therefore have a fixed launch date. Most CubeSat
builders will aggressively descope their missions as needed to meet this fixed launch date. As on put it,
“we’d rather take a 5% chance of it working on orbit, than a 0% chance of it ever launching.” STP has
recently launched a similar mission (STPSat-5) that was manifested on a commercial rideshare, and could
not therefore influence the launch schedule. The mission team accepted data quality issues and
operational constraints to stay within budget and launch on schedule. They have had issues on orbit and
have had to take time during LEOP to solve them, but they will eventually get to operational status for
achieving some degree of mission success.

In the other corners are missions more typical of STP, such as STPSat-2 or STPSat-3, which although
they were more fundamentally requirements driven, still aimed to meet requirements with streamlined
mission assurance. And ORS-1 had a fixed schedule sacrificing technical performance where needed to
maintain that schedule. But ORS-1 applied a more traditional mission assurance approach which is more
comprehensive than one would apply to a typical CubeSat or STPSat-5.

Figure A-4 shows that SID supported missions have, over the decades, migrated becoming more
constraints-driven missions with minimal mission assurance (lower left corner). This trend has further
evolved how SID approaches mission assurance; specifically, an agile constraints-driven approach that is
agnostic to a specific risk class.

Figure A-4. Migration of SID missions to constraints-driven mission assurance.

A.4 Evolution of Class Agnostic Mission Assurance

The move toward more constraints-driven, minimal-mission-assurance missions has caused the SID
mission assurance approach to evolve from a more traditional mission assurance approach adapted for
constraints-driven missions to an agile risk class agnostic version that is used today. Importantly, each of
these models remains relevant (i.e., tools in the SID toolbox) for use depending on the mission need.
Figure A-5 depicts the evolution to date.

29

Figure A-5. Evolution of mission assurance for constraints-driven missions.

In the top left corner, there is the “traditional” Class A-D spectrum of mission assurance approaches that
tailored level of insight based on the mission risk classification (A to D). This assumes that Class A
requirements-driven missions (i.e., Class A/B) will have the resources available to dig down into each
mission area for the full depth of insight, while constraints-driven missions (i.e., Class C/D) will be
willing to accept the additional risk associated with the lower level of insight. This traditional approach
assesses all aspects of the mission (e.g., all SV subsystems, launch segment, ground segment, etc.),
reaching back for all applicable SMEs. It provides assurance that the space system will operate properly
on-orbit by verifying requirements, ensuring adequate environmental testing, and providing independent
risk assessments from appropriate experts.

As resources become constrained, the mission can tailor further by concentrating limited mission
assurance efforts into specific areas. This “Tailored” mission assurance model “tailors” both the breadth
and depth of insight (i.e., which specific subsystems or areas will be evaluated). Subsystems or segments
that are deemed lower risk (e.g., a production line, use of heritage components or more extensive testing)
are tailored out for specific evaluation by dedicated SMEs. This frees up scarce resources to assess the
higher risk subsystems or segments (e.g., modifications to a production run, changes in components, or
“Do No Harm” verifications). This more focused expertise leverages what is already known to provide
reasonable assurance that the system will operate properly on-orbit.

But if broad coverage of subsystems is desirable and resources are insufficient to achieve the most
minimal level of insight across all SMEs and experts there is the “generalist” approach. The generalist
approach offers a better opportunity for identifying risks that the tailored approach could miss without
having to expend the resources required of the traditional approach. This approach replaces SME
expertise in every area with three to four generalist system engineers who possess seasoned experience
(or “Spidey Senses”) to screen for problems requesting additional SMEs and experts as needed.

This was first initiated on STPSat-5 employing four individuals from different areas of the company. This
can be scaled down to accommodate an extremely low level of support, for example, just one full time or

30

perhaps a half time generalist. This approach provides a limited assurance that the system will operate
properly on-orbit.

The most recent development that SID has recently begun to productize is the “Class Agnostic” mission
assurance model. This model is not new but rather an outgrowth of mission assurance evolutions to date.
This model is described in the main body of the TOR.

31

Appendix B. Other Applications and Illustrations of the Class Agnostic Concept

B.1 Early Class Agnostic Diagrams and Approaches

The initial Class Agnostic approach diagram in Figure B-1 was developed by Peter Chang and Andrew
Read, and emphasizes the “knobs” of the mission and the need to adjust your risk management in
accordance with your resources. It also recommends an up-front “blitz” of evaluation by subject-matter
experts to help determine where risk mitigation efforts should be focused.

Figure B-1. Initial class agnostic approach diagram.

32

The initial presentation of this approach (see Figure B-2 and Figure B-3) also included a discussion of the
applicability of Class Agnostic Mission Assurance to Continuous Production Agility.

Figure B-2. Applicability to Continuous Production Agility.

Figure B-3. Continuous Production Agility flow using class agnostic mission assurance.

33

Later evolutions of the same paradigm changed the diagram slightly (See Figure B-4) to streamline it and
to more clearly label the steps.

Figure B-4. “Square” diagram of class agnostic mission assurance (Jasper et al., 2020).

B.2 AFRL Program-Driven Approach

A version of the “square” diagram (See Figure B-5) appeared in a paper for the IEEE Aerospace
Conference. (Jasper et al., 2020)

In this paper, the authors lay out the class agnostic concept against a typical small satellite program
execution. This approach makes heavy use of peer reviews and the regular discussion of trades between
requirements, risk, cost, and schedule, with higher-level programmatic reviews conducted at longer
intervals and where “knobs” must be adjusted.

This paper shows how the overall construct can be adapted to a program’s needs, with steps adjusted to fit
the program execution cycle and the practices of the organization.

34

Figure B-5. “Square” diagram of class agnostic mission assurance (Jasper et al., 2020).

B.3 References

[1] Jasper, L., Braun, B., and Hunt, L. (2020, March 8-13). New Constraint-Driven Mission Construct
for Small Satellites and Constrained Missions [Paper presentation]. IEEE Aerospace Conference,
Big Sky, MT, USA.

Approved Electronically by:

Cognizant Program Manager Approval:

Aerospace Corporate Officer Approval:

Content Concurrence Provided Electronically by:

AEROSPACE REPORT NO.
TOR-2021-00133

A Class Agnostic Mission Assurance Approach

Mark P. Jelonek, GENERAL MANAGER
STRATEGIC SPACE OPERATIONS
DEFENSE SYSTEMS GROUP

Jay G. Santee, VICE PRESIDENT
DEFENSE SYSTEMS GROUP
OFFICE OF EVP

Kara A. O'Donnell, PRINCIPAL DIRECTOR
ADVANCED DEVELOPMENT & PLANNING DIVISION
STRATEGIC SPACE OPERATIONS
DEFENSE SYSTEMS GROUP

Martin Whelan, SENIOR VP DEFENSE SYSTEMS GROUP
OFFICE OF EVP

Douglas A. Harris, SENIOR PROJECT LEADER
STRATEGIC INITIATIVES AND SMALL LAUNCH
SPACE INNOVATION DIRECTORATE
DEFENSE SYSTEMS GROUP

© The Aerospace Corporation, 2021.

All trademarks, service marks, and trade names are the property of their respective owners.

SY0720

Technical Peer Review Performed by:

AEROSPACE REPORT NO.
TOR-2021-00133

A Class Agnostic Mission Assurance Approach

Kara A. O'Donnell, PRINCIPAL DIRECTOR
ADVANCED DEVELOPMENT & PLANNING
DIVISION
STRATEGIC SPACE OPERATIONS
DEFENSE SYSTEMS GROUP

Eleni M. Sims, SENIOR PROJECT
ENGINEER
AGILE SPACE ACQUISITION &
IMPLEMENTATION
SPACE INNOVATION DIRECTORATE
DEFENSE SYSTEMS GROUP

© The Aerospace Corporation, 2021.

All trademarks, service marks, and trade names are the property of their respective owners.

SY0720

	1. Introduction
	1.1 Background
	1.2 Organization of TOR

	2. Key Concepts
	2.1 Introduction
	2.2 Agile Mindset and Manifesto
	2.3 Agile Mindset for Mission Assurance
	2.4 Requirements-Driven and Constraints-Driven Missions
	2.5 Key Mission Attributes and Concepts

	3. Class Agnostic Mission Assurance
	3.1 Step 1: Establish the “Knobs” of the Mission
	3.1.1 Establish Mission Objectives
	3.1.2 Understand Constraints
	3.1.3 Decide Whether Requirements or Constraints Drive the Mission
	3.1.4 Articulate an Initial Risk Posture
	3.1.5 The “Knobs” Are Not Fixed

	3.2 Step 2: Align Iterations to Project Tempo
	3.3 Step 3: Identify Risks and Divergences in Context
	3.3.1 Identify Risks and Divergences
	3.3.2 Identify Potential Reduction Efforts
	3.3.3 The Role of Peer Reviews

	3.4 Step 5: Assess Efforts against Objectives and Constraints
	3.4.1 Estimating Risk and Risk Reduction
	3.4.2 Estimating Efforts

	3.5 Step 5: Rank and Execute High Value Efforts First
	3.5.1 Visualization Approaches
	3.5.2 Execute Efforts
	3.5.3 A Word About Messiness

	3.6 Step 6: Reevaluate, Refine and Reiterate
	3.7 Step 7: Capture Decisions and Lessons Learned

	4. Conclusion
	5. References
	Appendix A. Constraints-Driven Mission Attributes and the Evolution of the Space Innovation Directorate’s Class Agnostic Mission Assurance Approach
	A.1 Constraints-Driven Mission Attributes
	A.1.1 Program Attributes
	A.1.2 Technical Attributes

	A.2 Constraints-Driven Risk Tolerance
	A.3 Spectrums of Mission Assurance
	A.4 Evolution of Class Agnostic Mission Assurance

	Appendix B. Other Applications and Illustrations of the Class Agnostic Concept
	B.1 Early Class Agnostic Diagrams and Approaches
	B.2 AFRL Program-Driven Approach
	B.3 References

